Говорити з повною впевненістю про рівень знань древніх греків в області комбінаторики дуже важко, оскільки до нас дійшли далеко не все з їх наукових досягнень. В 391 р. н.е. натовп монахів зруйнував центр язичної науки - олександрійський Музеум - і спалив більшу частину зберігаємої там бібліотеки, що налічувала багато тисяч томів. Рештки бібліотеки зруйнувались на протязі ще трьох століть, а в 638 р. н.е. вона остаточно була зруйнована під час захоплення Олександрії військами арабського халіфа Омара. Більшість наукових книг назавжди загинули, і ми можемо лише здогадуватися про їх зміст по коротким переказам натякам в рукописах, що збереглися.
По цим натякам можна все ж таки судити, що певні уявлення про комбінаторику у грецьких вчених були. Філософ Ксенократ, що жив в ІV ст.. до. н.е. підраховував кількість складів. В ІІІ ст.. до н.е. стоїк Хрисипп вважав, що кількість тверджень, отримуваних з 10 аксіом, перевищує мільйон. На думку Геппарха, із стверджуючих аксіом можна скласти 103 049 сполучень, а додавши до них заперечні, 310 952. ми не знаємо який саме зміст надавали ці філософи своїм ствердженням і як вони отримували свої результати - числа, що наводив Геппарх дуже точні, щоб вважати їх результатом грубої оцінки, і в той же час їх не можна пояснити. Напевно, у грецьких вчених були якісь, невідомі нам, правила комбінаторних розрахунків, які скоріше всього були невірними.
Конкретні комбінаторні задачі, що торкалися перерахунку невеликих груп предметів, греки розв'язували без помилок. Аристотель описав без пропусків всі види правильних тричленних силогізмів, а його учень Аристоксен з Тарента перерахував різноманітні комбінації довгих і коротких складів у віршових розмірах. Математик Папп (ІV ст. н.е.) роздивлявся число пар і трійок, які можна отримати з трьох елементів, не забороняючи їх повторення.
Велику увагу грецькі вчені приділяли питанням, граничним між комбінаторикою та теорією чисел. Ще в VІ ст. до н.е. в школі філософа-ідеаліста і математика Піфагора виникло твердження, що світом правлять числа, а речі лише відображення чисел . Як і китайці, піфагорійці надавали особливе значення числу 36 - воно було для них не тільки сумою перших 4 парних і перших 4 непарних чисел, але й сумою перших трьох кубів.
Символом бездоганності для піфагорейці вважали бездоганні числа, що дорівнювали сумі своїх дільників, наприклад,
6 = 1 + 2 + 3 28 = 1 + 2 + 4 + 7 + 14
а символом дружби - дружні числа, кожне з яких дорівнює сумі дільників іншого числа (наприклад, 220 і 284). Пошук таких чисел потребував комбінаторної майстерності.
Перехід від площини до простору дав можливість будувати ще більш складні числа. Наприклад з трикутників можна скласти піраміди. Підраховуючи кількість крапок в таких пірамідах, прийшли до пірамідальних чисел 1, 4, 10, 20, ..., що були сумами ряду 1 + 3 + 6 + 10 + ..., складеного з натуральних чисел. Проте подальше узагальнення потребувало введення багатомірних просторів, що лежало за рамками можливостей давньогрецької математики.
Немає коментарів:
Дописати коментар